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ABSTRACT

It is noted that certain common linear wave operators have the

property that linear variation of the initial data gives rise to one-

dimensional evolution in a plane defined by time and some direction

in space. The analysis is given for operators arising in acoustics,

electromagnetics, elastodynamics, and an abstract system.
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1 Introduction

In this paper we point out an interesting fact concerning three common instances of linear wave

propagation (acoustic, electromagnetic, and elastic). In each case, we consider the initial-value

problem in some region of space sufficiently small that the gradients in the data can be taken

as constant. Then the evolution of that data in time corresponds precisely to that produced by

one-dimensional waves travelling in some distinguished direction. In the three instances, this

direction is defined 1 by the pressure gradient, by (V x B) x (V ×/_) (not the Poynting vector),

and by any vector perpendicular to V × _7. We also consider an abstract system, to which all

2 x 2 systems in a certain class are equivalent.

2 Statement of Result

Consider a set of linear partial differential equations in n unknowns and d space dimensions,

i=d

Otq + _ A_x,q = O.
i=l

(1)

A simple wave solution of (1) is a solution of the special form

q(£, t) = rtf(g' £ - At)

where _'is a unit vector in the direction of wave propagation, A is the speed of propagation, and

f is an arbitrary scalar function. Such solutions exist if and only if rt is a right eigenvector of

i=d

At = E tiAi.
i=1

Linearly varying initial data for (1) can be considered as a vector space :D in R _d, conveniently

displayed as d column vectors

D = [Ozlq, Ox2q,...]

Data giving rise to a simple wave is of the special form

Dt = [ll re, e2rt...].

Denote by 8t the subspace of :D containing such data, with _'fixed and A # 0, i.e., the set of

data giving rise to one-dimensional wave motion in the direction _.

The evolution operator A that produces Otq from an element of :D is an n × nd matrix whose

nullspace Af(A) comprises the set of linearly varying steady solutions to (1). We claim that for

some interesting evolution operators, such as those mentioned in the Introduction, an arbitrary

dement of 7) can be represented as a sum of elements lying in N" and elements lying in some St,

D = Y_3jNj + _-_akSt,k (2)
j k

IThe notation used in this paper is that bold type represents a vector such as a set of unknowns; vectors with

geometric meaning in R 3 have arrows surmounting regular type



Note that we do not claim that Af + St =/), but that (when the trick works) the direction _"
can be chosen so that Af + St includes any given element of/). To evaluate the coefficients in

(2) we operate on both sides with A, giving

vqtq = Y_ a_Akr,,k (3)
k

which is merely a decomposition of the time derivative onto the eigenvectors for wave motion

along/. This differs from the one-dimensional decomposition (Pdemann problem) in that the

direction of [is unknown and enters into the equations nonlinearly. In the following sections we

see how this works out for various special cases.

3 Examples

3.1 Examples with Unique Solutions

3.1.1 Acoustics

For the equations governing acoustic waves in a uniform medium we have

A_ =

0 ll

*1 0

12 0

G o

_2 _3

0 0

0 0 '

0 0

(4)

where the unknowns are (p, 0") T, the pressure and velocities, and units have been chosen to

make the sound speed unity. The eigenvalues are ._1,2,3,4 = -1,0, 0, 1 and the non-stationary
eigenvectors are

_= _g, r4= _-

The expansion (3) is

which can only be solved if

I1= al +a4 g

[I _7t=-gradp,

when the wavestrengths are

-1 = I(L _',- pt), (_4= _ (L ,_,+ p,).

(5)

3.1.2 Electromagnetics

Maxwells equations in free space, for the magnetic field/_, and the electric field /_, in units for

which the speed of light is unity, give rise to

A! =

0 0 0 0 -13 12

0 0 0 t3 0 -tl

0 0 0 -_2 11 0

0 _3 -t2 0 0 0

-t3 0 tl 0 0 0

t2 -tl 0 0 0 0

(6)



TheeigenvaluesA1,2,3,4,5,6are - 1,- 1,0,0,1,1andthe non-stationaryeigenvectorsare

rl= /- , r2= _. , rs= __. , r6= __- ,

where g, t'are any pair of unit vectors such that g, g,i*form a right-handed orthogonal system.

The expansion (3) is

/5_ =al -i" +a: __. +as[ __. +_6 -i" (7)

implying

_i, = -(-_ + -1)_'- (-5 + -:)_"

For a solution to exist, both ]3t and /_t must lie in the plane spanned by _"and t, which is the

plane normal to _. Then
II B_ × D_ = curlB × curl/) (8)

and we easily find

O_1 : --/_t" s'-/)t" t,

,_ = -_,. i'-/5_ ._,

,_6 = /_t. _'- Dr" t.

(9)

3.2 Examples with Nonunique Solutions

3.2.1 'Cauchy-Riemann' Equations

Consider the system obtained by adding time-dependent terms to the Cauchy-Riemann equa-

tions;

ut+u_+vy = 0

vt-vx+uy = 0 (10)

for which the matrix At is

At: [_1 g2] (11)g2 -gl "

Gilquin, Laurens and Rosier [1] have shown that any strictly hyperbolic 2 x 2 system can be

reduced to this case by a transformation of variables, and Noelle [2] finds that any linear initial

data is the sum of three simple waves.

The eigenvalues of At are A1 = -1, A2 = 1, with eigenvectors

gl - 1 [ _1 "_ 1

rl = _2 , r2 = ] 12

3



These can be normalised and rewritten in terms of the wave direction 0 as

I -sinO/2 I cosO/2rl-- cosO/2 , r2- sinO/2

and the expansion (3)becomes

ut [ sin 0/2
-- O_1 Iv_ - cos 0/2

This can be solved for any choice of 8:-

cos 0/2 Isin 0/2 " (12)

al = ut sin 0/2 - vt cos 0/2, a2 = ut cos 0/2 + vt sin 0/2. (13)

3.2.2 Elastodynamics

The equations governing elastic waves in a uniform isotropic medium are of the form (1) with
q = (_,p,_)r where _ is the velocity, p is the trace of the strain tensor, and 0_ forms the

antisymmetric (rotational) part of the strain tensor. The strains are related to the displacements
by

p = div 4,

and

= curl 3.

The matrix At can be written as

0 0 0 btl 0 13 -12

0 0 0 b£2 -£3 0 tl

0 0 0 b£a _2 -_1 0

_1 _2 _3 0 0 0 0

0 -_a /2 0 0 0 0

t 3 0 --_1 0 0 0 0

--12 _1 0 0 0 0 0

(14)

Here units have been chosen so that transverse waves (S-waves) travel with unit speed, and

longitudinal waves (P-waves) with speed v_, where the parameter b is

2M
b=l+--

L

and L, M are the Lam6 coefficients.

The matrix (14) has eigenvalues A1,2,3,4,s,6,7 = -v_,-1 - 1,0, 1, 1, v_, with non-stationary
eigenvectors

ri: I
r5 = 0 ,

r 2 =

r 6 =

o,
g

0 ,

r 3 =

r 7 =

0

-g
(15)

(]6)



Thus the expansion (3) for this case is

pt

_t

---- o_ 1 012 0 + a3
/-

i"
+ as

/-
0 + a6

g

0 + a7
/.

(17)

From this we observe that _t lies in the plane spanned by g, _, so that _'must be chosen normal

to _t = curl9. For any such choice of _,

a7 + al = pt/V'-b,
a -al =
a6+a2 =
a6 - ot2 : g" vt,

aS -_- a3 --- g._,

=

(18)

3.3 An Example with no Solution

The following is based on a suggestion of Jonathan Goodman (Courant Institute, NYU). Con-

sider a system comprising two copies of the acoustic equations, with unknowns (gl, pl, v2,p2).

The resulting one-dimensional wave problem has a solution only for data with _l,t II _2,t-

4 Applications

These results have potential application to the numerical analysis of wave motion, where the

solution is often assumed to be linear within elements, and where the update strategy may

depend on whether waves are entering or leaving some region. For a critique of methods where

wave directions are determined relative to cell boundaries, see [3]. Dissatisfaction with such an

approach leads to an interest in representing multidimensional waves in a way that is coordinate-

free, but simple enough for computation. The lack of a general pattern may not be a drawback;

exploiting behaviour that is very specific to a particular equation set may be the most effective

approach.

Specific applications will turn on details of numerical technique as well as the analytical

decompositions; for that reason they are not explored here, but reference may be made to

computations of the compresible Euler equations by splitting finite-element gradients into steady

and unsteady components [4], and to a boundary condition for Ma_xwell's equations that uses

the above formulae to identify the direction in which waves exit the boundary [5].

In a non-numerical context, there is precedent for this analysis in the work of Frohn [6] who

studied steady three-dimensional supersonic flow by the method of str_ned coordinates, where

the objective is to find a coordinate perturbation such that the singularities of linear theory

become realistic shocks and rarefactions. She selected a plane containing the streamline and the

pressure gradient as the one in which a two-dimensional straining should be applied

5 Conclusions

Given a set of hyperbolic partial differential equations in D space dimensions (D > 1) and time,

together with linearly varying initial data, one may seek directions in which the evolution of the

problem takes place one-dimensionally. We have given examples in which the search succeeds

5



(anda ratherartificial counterexample).Sincea practicM computational algorithm can only be

based on a finite number of wave directions, this offers a possible basis for the creation of such

algorithms.
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